Strategy for constructing robust multivariate calibration models

نویسندگان

  • H. Swierenga
  • A. P. de Weijer
  • R. J. van Wijk
چکیده

In multivariate calibrations usually a minimal residual error in the model’s predictions is aimed at, while generally less attention is paid to the robustness of the model with respect to changes in instrumentation, laboratory conditions, or sample composition. In this paper, we propose a strategy for selecting a multivariate calibration model which possesses a small prediction error and, simultaneously, is less sensitive to the above-mentioned variations. The strategy is applied to calibration Ž . Ž . models used to predict the density of poly ethylene terephthalate PET yarns from the Raman spectra. The strategy implies that spectra of calibration samples are measured under circumstances under which the application will be implemented, and Ž . spectra of a smaller set under different conditions variations in ambient temperature, laser power, and laser frequency according to an experimental design. The prediction results of the calibration model are used in a ruggedness test in order to test the sensitivity. In this study various calibration models using different spectral preprocessing techniques are tested. These ruggedness results together with the prediction error are used to select a good model. Moreover, it is possible in this way to provide the boundaries for the experimental conditions, where the model is valid. q 1999 Elsevier Science B.V. All rights

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of robust calibration models in near infra-red spectrometric applications

When spectral variation caused by factors different from the parameter to be predicted (e.g. external variations in temperature) is present in calibration data, a common approach is to include this variation in the calibration model. For this purpose, the calibration sample spectra measured under standard conditions and the spectra of a smaller set measured under changed conditions are combined...

متن کامل

Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection

The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...

متن کامل

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Development of a Model for Locating Hubs in a Competitive Environment under Uncertainty: A Robust Optimization Approach

This article explores the development of previous models to determine hubs in a competitive environment. In this paper, by comparing parameters of the ticket price, travel time and the service quality of hub airports, airline hubs are divided into six categories. The degree of importance of travel time and travel cost are determined by a multivariate Lagrange interpolation method, which can pla...

متن کامل

GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES

In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999